
3ecutityClassification

DOCUMENT CONTROL OATA - R&D
fs.cwo .Ia..ificet!m! of Ill!.. b..Y of ..=1...1 . . . ,...”!.8 ..”.,.,,.. “w., wh.” t,. ‘“eca)(‘-P.,, f. .)a.s;f~=dj

,. O% IGINATIN G AC TI”,TY (C.=rPorateauthor) 2. RE. O.T S.C.. IT” c ..SSIF,CA T,O.

Burroughs Corporation Unclassified

Defense, Space and Special Systems Group ,b =.0”.

Paoli, Pennsylvania None
,. REPORT TITLE

Detection of Essential Ordering Implicit in Compiler Language Programs

4. DESCRIPTIVE NOT= [WD. ’31f.P.,f .“d ;“=l”eiv- ..(-J

Quarterly Progress Report, October 15, 1966- January 20, 1967
S.AUTHOR(S) (Last..”..,1!?.,..,,,.,w,,.,)

Bingham, Harvey W.
Fisher, David A.
Semen, Warren L.

6. REPO R? DATE 7.. ToTAL NO. OF PAGES 7b. NO. OF R=*S

February 1967 42 6
0.. CONTRACT 0. ma.. ?40. 9.. 0RIGINA70., S REPORT .“..,.(s}

DA 28-043 -AMC-02463(E)
b. ,.0...7 .0. TR-67-1
; 1E6 20501 A 485
c.

-03
9b.fl~H:pO~f;.ORT .0(s) (A.Y othernmbm that“w’ be @..la..d

d. -01 ECOM-02463-2—
,0.A VA lLABILITY/LIMITATION NOTICES

Distribution of this docume

, ,. SUPPLEMENTARY NOTES 12.SPONSORING MILITARY ACTIVITY

U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703
AMSEL-NL-P- 1

,3. ABSTRACT
This is tbe second report of an investigation to determine how implicit parallelism
in programs written in compiler languages can be recognized and exploited by
machines with highly parallel organizations. An algorithm is described which
identifies the complete serial ordering among parts of a program based on the
input-output sets of these parts, the ordering given by the programmer, and any
known essential order among the program parts, The algorithm is proved and a
demonstration given that a minimum number of comparisons of input-output sets
are made, Application of the parallel recognition procedure to subroutines, loops,
conditionals, recursive subroutines, and serial input-output device calls is ex-
plained. The effect of particular features of several compiler languages on paral-
lelism are discussed, These features include loops, transfers of control, con-
ditionals, and conditional sequences. Requirements for replacing iterative loop con
trol by parallel paths of control are given. Alternative algorithms for recognizing
essential ordering are suggested which can be executed more effectively on a
highly parallel machine, Application of the given algorithm to the syntactic
definition of a context-free language is also considered.

I
DD ,%. 1473

Security Classificatim
41

*

Security Classification

,,.
.,, +?0-05

Parallel Programming
Program Flow Analysis
Program Languages
Context -Free Grammars
Multiprocessing

INSTRJCTIOS

ORIGINATING ACTIVITY Enter the name and add,.,,
r the C.”t.ecto,, SUbc..lracmr, grantee, D,pattme”t of Di-
!nse activity m other organization (comor.fe author) issui. {
,. repofl.

.. RwORT SECURITY CLASSIFICATION Enterthe . ..=
II security .I. ssific ation .f the report. Indicate whether
Reetri.{ed Date,, is inc!udea Marki.g is to be in acc.rd-
1’-, with .Pprop,i.te ,ec wit y +@ a{ {..s.

5, GROUP Automatic downgrading is specified i. DOD Di.
cC,., 5?S0. lLI and A,med Forces Ind.st ri.1 !4s...1. Enter
m group number. Also, when applicable, show that optional
,arkings h.”. been used f., GrouP 3 ad Gr.auP 4 a, author.
:*.

REPORT TITLE Enter the complete rep. !l title in all
@al Ietters, Titles i. ,11 ..s, s should be unclassified.
. me..i.gf.l title cannot be selected without .Iassific..

. . . show title classification i. all capitals in parenthesis
,medi!s+eir foli.wing fhe title,

DESCRIPTIVE NOTE% M .PPr.Priate, enter the tmw of
Port. e.+, interim, Prosress, summwy:1. or final.
ive {he imel.sive d.tas when a we.,fic rep.,! [.g per :.4 i.
)Vemd.

AUTHOR(S): Em<, the.eme(,)of autho<s)a. shown.“
in the report. Enter last name, fist name, middle initial.
military, show raI.A and branch of service, The name of
e principalauthor is’ a. absolute minimum ceq.tremc.t,

REPORT DATE E.te, the date of the report a, day,
,nth, yew o, month, year, If mom than one date appear,
, ‘h. ,~mt, use date of P.bl 1. etl. n,

L TOTAL NUMBER OF PAGES The total count
I.*M M low nwm.1 p.gi..tionprocedure., i.&. ,“e ntet the
lnnberofs CO.tai.in. inform.tham

t, NUMBER OF REFERENCES Enter the totel number of
ferences cited i. xhe rep.w

t. CONTRACT OR GRANT NUMBER. If .Pwo@ate, enter
e applicable umber of the coniract m qm.t under which
e reP.F! was written.

I, a, a sd. PROJECT NtIM6ER E.ier the .Ppr.pri. te
.Jit.ry dep .ztme.t identific .ti.a., s.ch ., project .urrber,
,bpmject number, system “umber,, task n,,,mber, etc.

t. ORIGINATORSS REPORT NUMBER(S): Enter the of fi.
.1 report ..rnber by wWtch the d... met will be ide.t if i ad
,d wntr.lled by the .rigi”.ting activity, This number must

“.liml, 10 !his reoo,t.

,. DTHER REPORT NUMBER(SX lf the ,eport has been
signed any other report numbers (eifher by the originator
4F lhe WO.W,), .1,o enter skis nwnbe,(e).

d

r
W,

4
4
2
1
1

*

-

), AvAILABILITY/LIMITATION NOTICE% EnW .Wlime
ati.ns . . further dissemh-mtle. of the WP@, **w* tti?! $h.~1
W. sed by sec.rit Y .1 as sif i. ai i.., using ‘.t e.cfwd dmteiaem.
uch as

(1)

(2)

(3)

(4)

(5)

,Qm!if ied requesters may obtain cQP1a8 af thi%
report [mm DDG r,
- F-ig. ..no...t..t .nd d!..em!sattem d *W
report by DDC is not .utb.riaed”
‘‘~, ~, ~.=”me”t egencies may Qb$aiv CQT!iss Qf ““:~
thk report diie.tl Y f-m DW. Other waiif iad W&2
users shell request through

, ,.

,,”, S, ~lita,y .g..ci.s mW obtain c.pie. .f this
report direc@ frmn DDC. Dfhef q.al ifkcl usets
shall request through

,aAN distribution ofthis report is c.nt~olte~ ~ti-
ified DDC users shall request through

.,,

If the report ha. been furnished t. tbe Office et T.chnlcal
.rvi. a., D.partrm?nt .r Commeree. forsale w tbePIAUC.ind
atethis factandenter the price, V k.owm

1. SUPPLEMENTARY NOTSS Use for miditi.nal .xptan*
,ry note,.

2. SPONSORING MILITARY ACTIVITY Enter tbe Inme..t
s. departmental projwt effhce o. lsbasat.ry .pe!mod.~ fp~
,6 r.,) the,..e.rch..dde.ei.pment.Includead@sm
3. ABSTRACT E.tf., . . abstract givine a brief ..d factual
unun.ty of the d.cum s.! i.tlic.t ;.e ei the repor!, . ..=~1i\K@

may .1s. appear elsewhere i. the body of the technical t.-.
ort. If additio..l space is required, a continuation -hut
hall.be attached.

It is hiKhly desirable that the abstract of Clas.ili.d m-
mts b. .aclassified. Each par.maph of the absttact .h.11
nd wiih an i.dicat+e. of the !nIllt..y .ecurit\, cleaskNceMOn
f the inrcmnetion in the rmracr.ph, represented .s f’ISJ (%’
:), or (u).

There is n. limitation . . the kwth of the .b.tr..t. Ww.
ver, the suggested Iensth is f?.!n 150 to 225 wwd..

4. KEY wORDS: Key words me teck.i. ally mea.ins{ut teem!
r short phrases that characterize a cepo.t and may be used .s
,dex entries for cataloging the report. Key words mus! be
elected so that . . security ci.ssificati.n is rq.imd. td.m-
iers, such as equipment model designation, trade name. mitb
ery ~roject code name, geographic lc.c. !Io., may be w.d . .
.Y words but -111 b; relhwed by a. i.dmati.n of tech.ni..l
:o.text. The assignment of link., rules, a.d weights is
)Ptio”al.

42 SecurityClasslhcakml

.; ,.
.,-
.,.,
,.,,,M
,.

;:;-

“

b

Technical Report ECOM 02463-2

DETECTION OF ESSENTIAL

ORDERING IMPLICIT IN

COMPILER LANGUAGE PROGRAMS

Quarterly Technical Report

150ctober 1966to 20 January 1967

Report No. 2

Contract No. DA-28 -043 -AMC-02463(E)

DA Project No. 1E6-20501-A485-03 -01

Prepared by

Harvey W. Bingham

David A. Fisher

Warren L. Semen

Burroughs Corporation
Defense, Space and Special Systems Group

Paoli, Pennsylvania

for

U. S. ARMY ELECTRONIC COMMAND
Fort Momnouth, N. J. ‘

February 1967

DISTRIBUTION OF THIS DOCUMENT IS UNLJMITED

ABSTRACT

.
k+.

This is the second report of an investigation to determitie how imp~cit pakSl]ev&?W~
in programs written in compiler languages can be recognized and exploited.,.by .‘. _:Y!~. ~
machines with highly parallel organizations.

1
An algorithm is described which “. ‘ .::?;

identifies the complete serial ordering among parts of a progrsm based on the ... Y;.”-;:.!
input -output sets of these parts, the ordering given by the l=%rammer~ a~ ~’”-. ~“}jl~

known essential order among the prOgr~ parts. The algorithm is proved and a 7;.Y
demonstration given that a minimum number of comparisons Of input -Outptlt s@S’ :;.-&:i’ ‘“
are made. Application Of the Parallel recO@ti~n prOcedure’0 ‘Ubroutties. 100pS* -%4.
conditionals, recursive subroutines, and serial input -output device calls is ex- ,.: :7.:%
plained. The effect of particukr features Of se~era~ cOmpiler lan~ages ~ k=r+ +%
lelism are discussed. These features include 100PS, transfers ‘f contrd~ ‘“con-””’.’. - !j;:’”
ditionals, and conditional sequences. Requirements fOr replacing iterati~ @P,

cent rol by paralle 1 paths of cent rol are given. . Alte rnativs algorithms for
,.;g~

recognizing essential ordering are suggested which can be executed more effec-, .:;,:.;~;
tively on a highly parallel machine. Application of the given algorithm to tbe ~~‘“; ~

syntactic definition of a context-f Tee language is also cmnsidere d.
+.

.“:L%., .+”.,,,,.,,,.,~=i
.,~,~ ~y
4<:.. .. $

.’

.,,,.,
,,, y“:.

-1., -

j!,

““”““’J
ii

b

--- .—-. ---
CONTENTS

ABSTRACT .

INTRODUCTION

ALGORITHM FOR DETECTING ESSENTIAL SERIAL ORDER

Definitions
Proof of Algorithm
Proof of Minimal Comparisons ,

ANALYSIS OF FORMAL PROGRAM STRUCTURES.

Subroutines
LooPs .
Conditionals
Recursive Subroutines
Serial Input-Output Calls

PROGRAMMING LANGUAGE FEATURES EF~CTING PARALLELISM

Loops .

FORTRAN DO Statement
ALGOL FOR Statement.
COBOL PERFORM Statement.

Unconditional Transfers
Conditionals
Sequence of Conditionals
Duration of Definition of an Instance

RELATED INVESTIGATIONS

Parallel Application of the Algorithm
Parallelism in Language Syntactic Definition

PROGRAM FOR THE NEXT INTERVAL

RfBLIOGRAPHY

DISTRIBUTION LIST.

~

ii

1

3

6
8

13

16

16
16
17
18
19

20

20

21
23
24

26
27
27
28

30

30
30

34

35

36

. .
111

...,.. . . .

. .,,,

Table

‘f

Z@K!?

1a

lb

‘2

3

4

ILLLISTRAT!ONS

Reduction of Syntactic Classes

Algorithm for. Essential Order Detection . . .

Syrnbology for Algorithm

Graph for Conditiomls . . ,

S Graph far Analysis of Recursive Subroutines.0
Serial Input-Output Ca@ . : ,

*

. .

. .

. .

. .

. .

. .

,,.!+.,

,!.’

,

INTRODUCTION

The object of this study is to detect instances of parallelism implicit in programs
written in compiler programming languages. The method chosen is to recognize
the essential partial ordering between program parts, since only parts which are
not essentially ordered can be executed concurrently.

In this report an algorithm ,for formal analysis of programs is presented and
proved which yields all instances of implicit parallelism between program parts
based on input-output aet intersections. Any initially known essential ordering
is used. The number of input-output set comparisons is minimal. At most, two
consecutive iterations of a loop are necessary to determine tbe essential order
for all iterations of the loop. Only one iteration need be analyzed for int ra -loop
essential order. The inter-loop essential order is determined by using both
iterations. Sufficiency of this analysis is shc?wn through application to language
independent formal translator structures, including subroutines, loops,
conditionals, recursive subroutines, and serial input or output calls.

Special features of particular programming languages affecting implicit
recognition of essential ordering include loops, unconditional transfers, con-
ditional statements, and parallel evaluation of a sequence of conditionals. The
loop statements yield potentially the greatest opportunist y for parallelism. Con-
ditions for replacing iterative control by a number of parallel pat ha of control
are given. Unconditional transfers may create loops or cross boundaries of
scopes of variables. Data dependent conditions are a principal cause of essen-
tial ordering. The duration of definition of an inst ante of a variable provides
essential information for efficient memory allocation.

Alternative algorit bms which can be exe cut ed in parallel to achieve re suits
comparable to the main algorithm are suggested. A method is indicated for
reducing the complexity of syntactic definition in context-free languages by
establishing classes of productions which can be recognized in parallel.

Most present programming languages presume that progrsms are to be written
as a sequence of instructions. This permissible sequence, while it contsins the
essential ordering (i. e. , it computes each value before that value is used), also
contains much extraneous order (i. e. , it orders computations for which the
order is completely immaterial), In the previous reportl we gave an algorithm
which detects the essential ordering given a permissible ordering. In this
report we extend the algorithm to permit detection of essential ordering given
a consistent combination of essential and permissible ordering.

‘Superscript numbers refer to references in the Bibliography.

1

.

. . .: .:.”. . .

. -. , ,_-
,.

‘::’-’%*In order to describe the algorithm, the meaning of some terms, should be “gitii+;:,;;
,, “ ‘~:~?f=,

A process is a transformation which generates a finite set of o~~p~is ~- ~~: “:-
.from a finite set of inputs. ..:. “::+?$??

,,.+. ..”-,
,,:,:,,,,:..:-::*:;

An= is the information possibly written into .a register ctUri~gT~$&
... ,..’

a process.
““”’’”’-%@
.,
:“““ “::”.:7’,’$

An ~ is the information contained in a register at time of aec’+ ~~~~-,:-,
a process. . . .&,-.x: .

- ,?...+..;:,..,, #~:+

A program is a finite set of processes which can be partially ordered :
.:..:-:,.:-H.

:...
by their input-output set intersections. ‘.”:Te,,::-i:::~

,. ““-??yf <.:-,,, .

A process execution is the application of the process transformation ‘”.. .“.;“ “. :Y?m t

to its input set to produce its output set. ‘“-’%:.,y .,
. ..-

“1

.,ti.- !
An ordered pair of inputs and outputs will be identified with each process. FOF ~~~ :‘ ~~:~j;
process Pi, this pair will be represented as (I., 0~). It will be assumed that all

*outputs are unique, that is, every time a ~egis er M written into, a new name is” : =X

created. This is done to keep separate the recognition of implicit parallelism in :“”“;~~
names from the potentially many-to-one mapping of names into registers.

,...,.2.
.,:..;-...,,.
...w.+ ,,;

The following relations between process pairs are used in this report:
.. ~..

,:,,J.:,;:+!

oT~ Pi must precede Pk is given.
. ,.,-,.>,.
.X,....... .,,

~s~ Pi may precede Pk is given.

% Pi must precede PW ,,.,
. . ;< ,

4 Pi must directly precede PF ., ‘,.’”-’.;:7”:

If neither T: nor T;,
,. ,.<

then processes Pi and Pk can be executed in either order or -. m.,., ..: ...,

concurrently. ~’T, OS, T, and S are, respectively, the sets of all true oT~, 0,+, “.”””’”:,u$j,

% and S;. The algorit!yn uses the given ~T -d *S to produce T and S. ,,, ..,,}.,,::: ‘,,~~:’
,... < ~:. .fiw,,

A graphical representation of the effect & applying the algorithm was Prese*e@.:@_ ;;’<
. .,?.:,4

the first report.z This representation is still appropriate for the re~sed ~o~~~~:
with the following substitution. Each relation Pi It Pk was labeled as a diredte$-: ‘: ~; &
R-arc from process i to process k. Replace each R by S. To distinguish .betweeni: .=7--,
these S arcs and the S arcs used in the graphical illustrations in the first repoi+i”” ~~~~!,
note %hat the reference process pair being analyzed partitions S into three disjoint:, ., ;:~~
sets: process psirs already analyzed, the reference process pair, and process ~;~-f
pairs to be analyzed. Consequently, there is no need for separate symbols. The - !!
graphs used as illustrations in this report consider only OS and ~T. ~~$:~.:~.::–l‘,

2

:,,

ALGORITHM’

,

FOR
SERIAL ORDER
This section describes the

DETECTING ESSENTIAL

algorithm (Figures la and lb) for detection of
essential serial ordering of p–recesses fr–om their input and output sets.

From previous partial analysis or explicit indicators, essential order is
sometimes known to exist between processes of a program. Consequently, the
algorithm of the previous report 1 has been extended to include any initially known
essential order among processes as parameters to the algorithm. The refore,
the corresponding input - output set comparisons are avoided during the algorithm.
When no essential serial order is known initially, the algorithm is equivalent to
the previous one. * The extended algorithm together with formal definitions of
its parameters and the relations among them are now given. A proof of the
algorithm is also provided, The number of input-output set comparisons made
by the algorithm is shown to be minimal. The reader who does not wish to
engage in the details of the proof can obtain the essence of the algorithm and
minimal comparison argument from the definitions and subs e ction int reductions.

*
When ~T is empty, then any T arc identified in step 3, Figure la, will not be
in S. This will be explained later,

,..., ,,..,. . .,-- .,.,-. . ,,,
,,., .. . “ ,.,..,.,.,+ .,
.,.,,.,,,.,.,-,,.....

....-..,
,,. - ...<

.- . . . ,..4

. ,, ,“,,.

,
..- . -- ”,..

,,

- .:$*J4 *

Give% ~s, OT, X, 1:1(l<js\3, C)j (I<,j< N) and ~S~ implieg i<k .:,;..~g

“:,::r*’::;#
Find: MS, ~lT “’-!>++*?

? ,.,, .. ,.
Method: ,,.! ..,.,.,7,.........,+ ,,,.,,. ,...

Step 1. i’0rk=2,3, ,.. ,Xrlo
... ,.. .
. .m.,.,,

r
.,..-.-.,.,,~

Step 2. fori. k-l, k-2, ,.. ,lcIo
,,! .“,.,,.,,,..,,,

,~
.. .

.-. !.

Step3. ,’ “=
..

false Ii-mlll:.T;,—
.

Step 4. ~ ; I ~ = u tlleriif s

Step 6. i

Step 7. I

Step 8.
!

Step 9. j

Step 10. ~

Step 11, !

Step 12.
i

I
Step 13.

Step M. ~

Step 15. I

Step 16. I

Step 17.

[

I

I

I

I

I

.1

fo~j=l,2, ,.. ,i-ldo

for j =1{ +1, k+z, . . ,Xlio

m w rwiw (T:: = _)

~wj=l,2,., i-ldc

,

PARAMETERS

S : initially given permissible ordering relation
0

~T : initially known essential ordering relation

N : number of processes in program

I, : input set for process j
J

Oj : output set for process j

@: covering relation for the complete essential ordering

T: the complete essential ordering relation
M

SYMBOLS

$: the empty set

n : set intersection

‘, V, A,– are respectively the binary ope rat ors “replaced by”,

“logical inclusive or”, “logical and”, and “logical complement”,

given in increasing binding order

SUBSCRIPTS AND SUPERSCRIPTS

indicates t rsnsitive closure of
mR

t i— indexes tbe predecessor process
For any relation _

mk
Y

— indexes the successor process

~ indicates the iteration of the algorithm
which produces R; m does not appear
in the algorithm description

R; = ~ if and only if ~R~ and no assignment has been made into R;,

or the last assignment into R: was true
—

Figure lb. Symbology for Algorithm

5

,,, :...:,,.,...&’&k m
..,. ,.,., :;,4L ..,,:

-“~:Em:.-~::”.:@J:~s,
,,,,,.. A ,*......

.
,..JI.
.. . .. - -, ,., -.
.,, ..!,,,,,,.,-. ,.,
.. . .,.~ ,
.,,. ,:,...

DEFIIWTIONS . w,*:; ::;%*W
. ,-%i:~

Definition L Process, P..
....,&

J
.,,,,. ~..,,:,.~
. .,,,,..,.

-, ..!,
A Process Pj is an ordered @r of sets (Ij. Oj). Ij is c~ed the in~ut s::i=~~~~

Pp Oj is called t he OUtPUtset foP Pj.
,“-.,,, -,6.,,.

...-.,.,.
,:: .,-4-.-4,

Definition 2.
,; :.~..:-e:...:&:

Program, P,
,,,,,,-.. 7..s

::. -.l
-.,. -,’-, ‘+%

By a program P is meant a finite set of processes [Pj~ (j = 1, 2, N).,::for::;:-.;s’;
,,,. ---

.,,.,. ,,. ,.,.,.,,,,
which the intersection af the input and output sets c~’ be wqf@ to define a st&i7ilZZ&& . .. ,.
~ti-symmetric relation. That is, P can be ordered s~.4h&or any ~ - ‘:;-: ~~{%,,,,,.

PrPk~P, Oifl Ik+ @implies i<k,
-. ,,, ,,...ti,.. . ,,
., .. :,,,.,,.,,.,,. k:,,... ..,. ..
,.. - -. .“ -!

Definition 3. R:, the arc from Pi to Pk.
. ...!>. .,,

.—,..,-”

For smy relation R ~ (PX P) we will write R; if and “only if Pi, Pi e P “arid R ::--
:~;.,:4i:ti

relates Pi to Pk in that order.
,,T.,.!,,’:.,,,,,..-

... ?..,

t
..0..

Definition 4.
-. . . .,

R, the transitive closure of R.
,,,,,,:., .4,,-. .? .,

For any relation R ~ (P X P) we will write ‘R to mean that relation such that
- ,.,,..._ ...+
.

t i.
~ If ~dflly if there is a sequence Of R ar;s: R~,, R~~, R]~l, Rj~. ~~:>:~

.,,.. .

... ... ,,, ,
Note that R is always transitive. -. ..,.- ,,..:,.

-. . .. ,,.
- ,,

Definition 5. T, the essential eerial ordering.
.-.-,.

., .,.. ,!-,. .
The relation Ts (PX P} is the essential serial ordering among the processefl ,:-

. ..

of P. T@ order is imposed by the input-output sbt”:rekitia~”” ““Tii&f is, for &y”’ ‘“”” *’. .
,..

Pi, Pk E P, T: if md only ,if there is a sequence Oi n Ij ~ # @, O. nIji”#@, : ““

.,. ,ojnn~+$, Thus T is the transitive closure of the input~ouiput,set
. *,,. ,
.,

relation. Then T is transitive and since the inpUt-Gi@it Set relaU0+3 ~~ st rtig~,, ,, “~i,,,,,,

anti-symmetric, so is T.-..-
.-:,W

Definition 6. S, the cover for the essential serisl order. ,., -. .,,.. .,

S is the covering relation

T; and there is no Pj @ P

for T. That is, for any Pi, Pk

such that both T; and T~. Note

6

●

Definition 7. ~T, the known essential serial order.

The relation ~T is any subset of the relation T.

Definition 8. ~S, the given permissible order.

The relation OS is the given ordering of the processes in P supplied by the

programmer. OS is any strongly anti-symmetric relation S (PX P) such that

T= ~S and ~T~ ‘(OT n OS).* Note that T satisfies the requirements for OS.

Definition 9. mR, the relation R after m iterations.

For any relation R, we will write ~R to mean the value of that relation after
th .

the m Iteration of the “for i“ loop (steps 3 to 17) in the algorithm.

Convention 1. N, k, i, and M.

Hereafter we will write N to mean the number of processes in P; k and i will

mean respectively the values of k and i during the (m + I)st iteration of the

“for i“ loop; because N, is finite (Definition 2) and the only loops in the algorithm

are at steps 1 and 2, the algorithm terminates in a finite number of steps and

we will write M to mean the total number of iterations of the “for i“ loop.

Definition 10. mC, the compared process pair relation.

We will write mC (1 ~ m ~ M) to mean that relation such that ~C~ if snd only if

P , P ~ P and i = g and k = h for some iteration j (1 < j < m) of the “for i“ loop.
gh

Cg if and only if Pg, Ph CPsndg <h.
‘ote ‘hat M h

*
For any program P and any relations Q, R c (PX P), Q ~ R if and only if—
for all Pi, Pk ~ P, Q; implies ~.

ii wU1 be shown that MS = S and ~~ = T, The,~lgurithm functions as ~~?%
.,

.. : .L,.,.
,:,,,.-

. . -
The body of the “for i“ loop (steps 3 to 17) is executed once for each arc “fi~~;,~%:

. ?,.
pi to Pksuch t@d Pi, pk~ P and i < k. These arcs are sufficient because ~~

.- . -.
F. -., ., ..”,..,- a<.

~s, ~T, S, and T am strongly anti-symmetric. TIN order of the arcs (&@ ‘,1’~~~~~.’.-. -., .r, ,,.,.. “,
! . -.&

and 2) guarantees that all sequences of arcs eonne C:ing two processes will Be v:-~~
.,—-_,,_ -

.-, ,,.:,,+
deterknined before the single arc connecting the prm:es sos is considered, ,,,,,.,,,...

.
Therefore, all indirect T paths can be determined 15’ilhour comparing the input- ~,~,~ ‘

..,, .

output sets of the end processes, For each iteralicm of the “’for i“ loop, if the ~~:.
- . j+.,

arc from Pi to Pk is not already in ~ T (step 3), Ihcn it mu.w either be in S, or ..:.1,.m,.

Pi and Pk can be exe cut ed concurrently. Therefore, if the ,arc is not in ~S
.,. ”

,,.,’*J- *aT

(step 4), then Pi and Pk can be executed concurrently. If the arc is fn &S (step 4). n~~”
. .

then the input,- output comparison must be made (step 5). If the intersection is :::
,...

non-empty, then the arc is in S and T, and is added to m+ IT (step fi). If the
.
., .-.. ,,

.;:&
intersection is empty, then Pi and Pk can be executed concu rrmtly and the EWC . ‘:_:::::

. .
.. ... -:t -

will be deleted from S {step 9}. To ensure that the arc from Pi to Pk is ~~~;-~%
m .,- -.,4

only arc deleted frum ~S, arcs are added to m+ ~S (steps 10 through 13), Ste@~&~=
., :..:s.

10 and 11 guarantee that there is a sequence of ~+ IS arcs connecting tO Pk +’~~
,,, ,,,,,--. ,,,.~

all Pj where
...’.. “-w ,.-Sj while steps 12 and 13 guarantee that there are ~+ Is ar~ :11,:s:?;:.

m i’ .- ,. -a .,,

connecting Pi to all Pj where Sk. Whenever there is an ~+ IT arc from Pi ‘--”‘,, “~(~:..ti.
m~ -. . ,..,.J

to Pk (step 14 or step 6), then steps 15 through 17 are performt?d. Since S is & :Lvz:.V;’”?.
-. .- ,.’.-’, Y
., ,:, -. ~:::

d..,,.
cove r, step 16 is included to ensure that no sequence of m+ IT arcs ending in

. - -,,,,.,
.... . ,-1

-:%4

- - ,- .-,,- ,.,,..-

,.,.,.
6 .. ,

.-,
:.,;

“p
,$::,:!*

sn arc from P. to Pk is sn arc in ~+ IS. Similarly, since T is transitive, step
1

17 includes all sequences of ~+1 T arcs ending in an arc from Pi to Pk as arcs

in T.
m+ 1

Lemma 1. Forallm(O<m~ M), mT~ T.

Proof. T c T by Definition 7.
0—

Assume for any m(O s m < M) that ~T~ T.

During the (m + 1)
St

iteration of the “for i“ loop (steps 3 to 17), arcs are added

to m+ IT only at steps 6 and 17. If m+ ~T~ is added at step 6, then Oi fl Ik # @

(step 5) and by Definition 5, T:. If the arc m+ ~T~ is added at step 17, then

Tj (step l~)o @ hypothesis mT~ i.mPlies T;. T: since either Oi fl Ik # @
mi

(step 5) or ~T~ (step 14). But T: and T: imply T~, since T is transitive

(Definition 5). The refore, all :m+ IT arcs added during the (m+ I)st iteration

are in T. Since by hypothesis, all other T arcs are in T it follows that
m+ 1

T ~ T. By induction on m, TCTfOrallm(O<m <M).
m+ 1 m—

Lemma 2. For all m (Osm sM), mT 5 ‘(m T Ores),

Proof. ~T~ ‘(OT noS) by Definition 8. Assume for any m(O s m < M) that

mT~ ‘(mT fImS). If not m+lT~ ‘(m+lT fl ~+ IS), then either some m+ IT

arc was added or some S arc was deleted during the (m + l)st iteration of the
m

“for i“ loop. If m+ ~ ~T 1 was added at step 6, then ~+ ~S~ (step 4) and thus

‘(m+lT n m+ls)l” If mS$ is deleted at step 9, then ~~~ (step 3), and since no

~+ IT arcs are added during the (m+ 1) ‘t iteration, T C ‘(T 11~S) impliesm—m

m+lT ~ ‘(m+lT n m+ IS). If ~S~ is deleted at step 16 or m+lT~ is added

at step 17, then either ~+lT~ (step 6) and m+ ~S~ (step 4) or mT~ (step 140

In either case ‘(m+ IT n ~+ ~s):. T j added
But if ~S~ was deleted ‘r m+ 1 k

9

.
.,. . ..

..,.. -,.
,----

(steps 16 and 17), then ~~, and thu,s, by h~othe;is~~~:ti~~s)~.”’ ‘~?~~~@’”’’’””””’”
. . . #

. .,,. ,+

all ~S arcs deleted during the (m + I)st iterati~ ar,e o~.t!~. f?rm Jf’w.}e-h,
.,- .-,....,*

... ,,
h = k (step 16), and no mT arcs are deleted. T~e;efO:O -:$(:m+.1Tm4*,=,...,. .

111-?L..,,J,-.~,k ,,,..
..= ..

‘(m+ IT fI S) j since both ‘(m+ IT 17 S)j’” & ‘(m+ IT P ~+ lS/.’.: ~. - -
m+ 1 k’ m+l i ~~~~ ., -.:’

..- . . <,,

cases then, ~+lT ~ *(m+lT fl m+ IS). By indygti~ ,~-m. mT ~ ~~rn~~~
,.

.. -., ,,....&*,,,, .,, .— ,,,-,.,.
for all mW s m < W

,., .,-. .,,,,,.
...-!.....

,.,....-..,! . . ,.,. ,&
,.. . . - ,.:7.,,,..-....+

Proof. If m = O, then by Definition 8, T ~ ~S. The only ~S arCs which a-~~~~~~~ ::fi.. . ,. . . .&:.w+,.., ,--., — . ,,%.-
St

during the (m+ 1) iteratim of the Iffor i! I 10op are at ~tep~ 9 and 16. If S :&~--.~~.%-% ,,,
m k::, :.-:,. -, ::L’l;:$G

.- --- ,4;..-

deleted at step 9, then with the exception of mS~ itself all sequences Of mS arC&.’ ::: .;,’~:.’~~=~x.,,,, ,..,#,..-“.. .,,... ...- .,...-.,.,”

beginning with mS~ are retained in m+ IS (steps 12 ~d 13). AU sequences d’- %..--;:
:rn-- .,---.-1,.-,-.

mS~ ire retained in
.

arcs ending with m+ IS {steps 19 and 11), with the exc,ET$~%%;:s:_z~
. ,...U,,.,i.

< i (step 10)”%dfi”T~ (step 11). The. =“.:i;.:..’~+of mS~ and ~S~ (step 11) where 1 ~ j ... --- - ,..,.,”.. ,,...- . ,. . .

~S~ need not be retained since Oi n Ik = 0 (steP ~). ~~f is, ~~. ~ ~m%~’%-;;::.
.,.,.,,,-,,

----..&. .

Tj (step 11) implies ‘(mT n ~S)~. But
.?..-.. .-:

~~~ ( step 3) .SO that the seque.nq%k:-~-=
mk ..,.. . .. ,.” —,. -.. _A-

(mT tl ~S) arcs from Pj to Pk cannot contain an arc frti Pi W Pk. Thus t~Sti~,T--+&. ,,,..-.,-..,4.-.
. .... . . .... ,,.

>: is retained when mS~ (step 9) is deleted. If mS~ ( 1 s j < i) is deleted~l~t ~~:~~~
. .. ---- ... . ,, - ,.,. . . ., .,.,,

step 16, then mT~ (step 3) and m iTj (step 16). By” Lemma 2, ‘(mT fl msl~. :’-”V.YU;:,:.”..2
-. . .. --- .. . ~,m

.,.,,++
s)!, ~~ch imp~es there is a sequence Qf ~S arCs f ‘m ‘j ‘o ‘k ‘-: :-~::,~;,snd ‘(mT n ~ ~

. . ,,-. ... ......

.,- ,,,,,,,,,, . _;. i+

otlier than the single arc S j Therefore,
- - ... . ,,.,.,”-

deleting the arc ~lS~ does not del~te--:-::~i
my -, . ,,,,.,. ,.,-,, ... .,- ., .,.”,,*.,

‘S implies T ct j ~%n in au cases T Z ~
the arc mSW _ _~S. BY inch cti o: on :rn., ::,z- ;-,“ .-,.: ~.:,,,;:.=

?: -. ,=+=-+-..3
T~~Sfor allm(O<m <M).

,. .,.-=:*&
. .. .. ..... .,. . ,M.,

10



Lemma 4. For allm(O s m < M), ~S n ~C ~ ~T fl mC,

Proof. If m = O, then ~C = $ and we are finished. Assume for any m(O s m < M)

that mS n mc ~ ~ T 11~C. Let i, k b: respectively the values of i and k during tbe

(m+ I)st iteration of the “for i“ loop. Then consider any Pg, Ph = P such that

Cg and S?2 Cg org=isndh=k.~g (Definition IO) implies that eithe r ~ ~,
m+l h m+l K m+l h

m+ IS arcs are added only at steps 11 and 13, and during the (m~ I)st iteration none

of the ~+ IS arcs added are in m+ ~C (steps 10 and 12). If ~C~, then Sg implies
m+l h

~+ ~T:. Otherwise,Sg and by hyf30thesis ~ ‘f$
mh

but no T arcs are deleted, so
m

g = i and h = k, and by the above argument m+ ~S~ implies mS~. Then if ~ T;

(step 14), m+lT~. If ~~~ (step 3), then ~S~ (step 4) and ~+ ~S~ (step 9) require

that step 6 and not step 9 be executed. But by step 6, ~+lT~. Then in any case,

any arc in both ~+ IS and m+lC is also in m+ ~T. By induction on m,

msnmc~m TnmCfor allm(O~ms M).

Lemma 5. For all m(O s m < M) and for any Pj, Pg, Ph = P, if Cg, Tj
mhmg

and Tg then both T ~ and ~~~.
m h’ mh

Proof. If m = O, then ~C = o and we are finished.

Assume Lemma 5 to be true for any m(O < m < M). Then consider any Pj, Pg, Ph

<P such that Cg Tj and ~+lT~. By Lemma 1, ~+lT~ implies T:, and
m+l h’ m+l g’

since T is strongly anti-symmetric (Definition 3), g < h. Similarly, Tj
m+l g

impfies j < g. If C
m ‘1’ ‘hen Incj$ ‘ince j < g < ‘“ ‘hen mT~ ‘d mT~’ ‘in” ‘one

of the m+ IT arcs added during the (m+ I)st iteration (step 6 and 17) are ~ ~C. By

hypothesis Cg TJ, and m T: imply
mh’mg T j s.ud m~~. But no mT arcs are deleted,

mh
S j must have been added dufing ‘heTj If ~+lS~, then since ~~~, ~+1 ~

S“m+l h’

11



.
,..-,,,e.,
,..,. . . ,,”,,*., -,”,.. !

,.,., .- ..,,&4
~=

.. .,,.””,, ,.,

,,., . . . . . . . .

since then ~~~ (step: 11),, Neither cocld ~,+ ~S~ have been added at.”st~p.1:..,,,,.,..,. . .,,..,._._e.m,., .. . . .,. _,, -.. . . ... .
@

BY induction on m, for all ZY40 s m ,: XI) and sw Pj, Pg, Ph 6P, C% ‘-”%?:m h *:: &,...;_,_;.
. . .+ct. .... .. . .

Tg imply ~T~ and ~~~.
., .,,* ,....-.....+

. .. ..*7,t.+-w~
mh ----%%*?-., : ,;:,-yb--~ :~.-~

,.,.. . “’! . ,,

Lemma 6. @ ~ MC.
,,..,,. .... . .

.,.,,.,.,+-. ,-,-,,..
.. . -. .-,..,., ,.,”,,

- ““”“.”“: :,:.:.7.”:!:.”. ,-. ,
-....,,,., ,., ..... .... ,+

proof. From the algorithm we see I.hat all S arcs added during the exewti~,~:,:-’~”:,;;”.;:~-- . .. . ....- ,.-”,,.,.,:,.
,... .,, . ... ,...,.,.,,,.

the algorithm are of the fO~ ~S~ ( SIWPS lo arK~11). where 1 < j < i c k ~ N, .“ku%.Of~”“.”0. . ,.- .... .. .. . .4., ,---, =.-

the fO~ ~s~ (steps 12 and 13), wher~ 1 ~ i < k ‘: j s ~. Then since OSs ~~,; ~~-. ,.,.
,., -! .. . . .,.... ,+-,.

-. . .. .., .. - -LT.
.% - ,..-.-

(Deffnition 8), alS arcs of MS must be in ~,C.
, .... . ,,,.-”s...,.. ----..—--. ,,, .. ..,, . .._ ,..--L,,

,,,. . , ,. .--”,

Theorem L MT = T.
., .,, ,........ .. ..,,. .,, ., ... . ...-%

%.-, --- , —-~~- . .....’-. .“-. .,-w,.,,,.. - ,-, ,..-”,
.,,,.... . ..-.-k .

Proof. By Lemma 4, MS n MC ~ ~lr, w sirl~e # c # (~mma 6), !hen “v ‘v::;:=,.. ., .. . . ...*.

& ~ MT. Therefore, & ~ ~T, a~lti +i~we T c ~1

. . ~.w-t..
s ( I..emrna 3), We have T .c-~~=~..-=,.,-,.,. ,, ,. ,. ,,,.%*

_ MC (Def:n:tion 3), soTcT(Lemrnal)and TC ~l’-r ~ ~lC. The ref me, ~~. ,i8 --.--2
., ., ,,..,..?

M– . ,,,.&..,u.

trmsitin since MT n MC is transitliw ( LA?nun:i 3) ~nr.i~lT a MC = ~~ “BK FF.:%-=-’
.- ,,..,.:.;:M:::::

t t . ...,,.. . ..-&..

is transitive, then T . MT, and sime we alrcacly have T ~ ~lT, T ~ ~’T. ‘.-i:
M .. ... .,,. .m-

. I .F . .-A*

by Lemma 1, MT= T, so MT = T.
. .... ... .. ------... . ,,,,.,-,, ,— .. ... .. --, . ,,.”-,,,,,,-,.- ,..+,.-,.-. .--, —-,

,. .. .. ..

Theorem 2. *s = s.
. “ .... ... .
-.,. ,,..”,.,
. .... ,-,-

- - ,.,-

Proof. SC Tsince MS~MC~ll
M–M

‘i” ( T.e?n?r.a 4) ar]d # ~ ~lC (Lemma 6). ‘Wt’’:.: .....~R. .. .. .. . .
. . . ...

@~ MT implies & ~ $, and si~:ie ~1-~ = “1’( Th?orer. 1), ~TS : ‘T. Then since :. ~..’- . .. ...
.,,,

12



t
T is transitive (Definition 5), T = T, and therefore &~T. But Tc_ & ( Lemma 3)

so & = T. By Lemma 5, for any Pj, Pg, Ph CP, if Cg T j and ~T~, then
Mh’Mg’ h

~ j ~t MT . T (Theorem O and T ~ M
MW

C (Definition 5), so for any P,, P P
jg’h

6P, if T; and T:,
then M~~ we already have is = ‘.

Therefore MS = S hy

Definition 6.

PROOF OF MINIMAL COMPARISONS

It will now be shown that no algortihm can produce S and T from OS and ~T with

fewer comparisons between input and output sets. This will be done by first

showing that one comparison must be made for each arc that is in S and not in ~T,

t
and that one comparison must be made for each OS arc which is not in T. It will

then be shown that each input-output set comparison in the algorithm identifies a

unique arc which is either in S and not in ~T, or is in ~S and is not in T, and that

no cornparis on is made more than once.

Lemma 7. For all m(O -s m s M), mS ~ ~S.

Proof. OS~ }, by the definition of transitive closure. Assume for any

m((l < m < M) that mS ~ ~S. During the (m+ I)st iteration of the “for i“ loop, arcs

are added to m+lS Only at steps 11 and 13. If m+ ~S~ is added at steP 11, then

Sj (step 11) and m ~S 1 (step 4). Therefore, by hypothesis ~S~ and ~S~.mi Then by

the definition of transitive closure, ~S~. Similarly, if 1m+lsj is added at step 13,

then mS~ (step 4) and mS~ (step 13), so that by hypothesis ~S~ and ~S~, and

therefore tsi
Then m+ IS ~ :S, since au

o J“
~+ IS arcs added during the (m+ I)st

iteration are in ~S and hy hypothesis all mS arcs are in ‘S. By induction on m,0

ms~:sfor allm(o<mgm.

13



,.
.,,,,. . .... .

. . ,- ,. ..,”.,,

., . . . . . . . . . . .

-. ,.!,-
. . . . . .

,. .,..,.
,.., ... ....,.

Tbeqrem 3., .,ne mmdmr..of.input.. output set tom. ps.ri sons is min}rna~--.”-”
.,, . — -.,-,:

,.,.
-. . ,.,..”-..

,.. .,,.

Proof. ‘let Pi, Pk ~ P’ such that’, ~S,~.
,.. A,

For an algoriT hm lo .establis.h’.w,hEm,,,,.
,.,., “i. .:....

,,,
. ,.. ...-+. .,.,

,.. ,-, ,,.
. ,,-. —

,..,.., . ?lds
k’

1* must be ai kkqt’ ‘ab~~ ‘~~ &te~i& whether T,,. ,: ~, since S ~ T,. ..Uiilkii~’?~,,,,,,. ,..
,

%

- - .,- ,-.’*’: . . .
., ., “.. it 4S g$.%n that T; ~tlz~t ~#;’ ..~~~~&:”~T$j. ~~.:ihust lm s hewn tbat either QF~~..~~~, ,~””

,,- .,-W:-*

or that there is a Pj E P such that both T; ~d l’: (Definition !3). IfS1 ‘=”—
k’

the,n.;:ZZ,L—<-

i: “ . j“
..- .’*...-=,-. ,,.:, ,_ -:,..

there is. no Pj CP such that both Tj and Tk (Dt?finition 6). Thus, the compafis~ti.;:.::’”.~.!
,. -.,,, ,,”. +.- .- .. .. .....#. .

Oi n q must be made. If ~~, then since T is ?ransitivc there ctan be no Pj ~~a.mh .. . .. ~
., .,. .. ,,..,!
,. . . . .. .... ...-. .- . ... ... ,. ,,w:K

that both T; and T:. Thus, tbe comparison Oi r. Ilc ml;sl bt? made. That is, one-, .,-::- -.,.--,:’ y,y:
- ,,,.,, -. ,,

input -ouiput set comparison must be made-for eri(:i~ arc that is in S and not in ~T,: : ‘~ ~~~
. .,,.,*

and one comparison must be made for each } s rc v;hi c h is not in T.
. .-::. .,-.. .. ,+,,,-,,.,,,,.,.,,., ,.,

. ,,-.- ,.,+

If during the (m+l)st iteration of the “for i“ loop (1 $,m <
. ,,.., .+.

M), the comparison Oi IIIk - : ;U.:5
,. -..,

is made (step 5), then mS~{step 4}. But then ~$
t .. . ..,,+

since .s c S (Lemma 7). Also, ~:~~~
m — o - . .,,,..,

. . . . ........”
~~ (step S), and therefore ~~~, since the algorit. hm dncs not delete any ares f~. --:- ‘::’” ~..,,.. ..... .,.:y

T, If it happens that Oi fl & # 0, then the arc ~S~ is not delcmd during the (mzEl)~?:~~-:~~;j~~
---- ,-. , ,*. . -, .. .- . .

iteration, But m+lS~ (steps 9 and 16) can noi lx? deleted during any subsequent: -““ “-.-o-. .... . . . . . . . . ..,,! ,.

iteration of the “for i” loop. That is, ~S~, and I,ht? reforc S;, since ~lS =S ( ‘1’heo=
... ,,,,.,
.,.. . .-!. ,,.,.. . ,,.-,- --., -..,7: .:w

rem 2). If Oi fl Ik = 0, then m~~ ( step 3) ““ands?ep [; is not executed during the (~ &$:..:l; }:... ,- .,,.-,,.,.,,,,.. ,,
—i .-.-. . ,. .,,,

iteration, so But ~T~ ( steps 6 and 17) can not be added during any sub-
..— .,.

m+lTk”
.- -.. ,.
.. -.1.-. . . .,.,!

~isequent iteration of the I‘for i‘’ loop., Thus, -i - .,.,.

M k’
and therefore T

k’ since firT,W ::-:- ,-:::,:x
- .,.. .

(Theorem 1). That is, each input -output comporis on C)j - Ik in the algorithm
i,. ,,,,,6

. ,.-. .!.1,,.,, .,.,
.“.. . -~.

identifies a unique arc (from Pi to Pk) which is either in S and not in
..,..!,,-.,,,.,,

“’T, or is in .,..-;,Aa

t
,..,,,4

S and is not in T. Finally, none of these COCKi,]ari soris is m de more ihan once ::H.
.,,. .

0 ,..:.,-,,4,,.A.,,,,.,-..+. ,,
-,+

14
. ,......,,,..,,,., ,.,.... . . ....”-,, .,.

.,..
,,

,:”:,:,-”,:..”-3



since only the sets Oi and Ik are compared during the (m+ 1)‘t iteration

(step 5), and no two iterations of the “for i“ loop have the same value for the

pair i, k (steps 1 and 2).

Therefore, every input -output comparison made hy the algorithm is necessary.

15



--*am,..,.., ,,,,.,.,,.. ,.,, .-’?-- ,,,,.,.,.,,,,e.,,.,.,,,,. .. , ,:.. ...-.. ~, .- ,:,.:,. ,.,‘.;:z,*.,il,,,:,,+.+;,,,, ,.., .
.,,.,. -,-., .-.-T.-%

-’-.”+4
. ..:-.. :4

.“.-.,x
,.,

., ,..-~. ,-

‘-’-’--==3ANALYSIS OF FORMAL PROGRAM STRlJ$TiHt&&2 /+ :
““”’:’’’zikili

Theability to apply the algorithm for detection of essential serial ord~kti~~ ‘[;=

*
nonempty ~T allows more freedom in the use ~~of the analysis, . ... Th& ~i$~$$~- .:, V
investigated relative to certain kminal program structures ‘and t&~~~v~~_
which are relevant to subroutines, conditionals” and se rial input -out.putX_~
explained. With the explicit exclusion of arr?w, it is shown that
cursive subroutines can be c~<l~;”l~ ari~$$z~~ “With ‘bniy”’tW6%i
process. Arrays will be considered in the next report.

SUBROUTINES ,. . ,.,,...- . .,++

‘“”“’”’““:+%%:-
The advantages of the non-empty ~T arise in t~e analysis of Progra 5WtiUq,E&~$
such as subroutines, A subroutine (whether open:or closed) need.riot .he:fi-~~~
for each call, but may be analyzed only once and the reshlts” of tti~ “fia~~~fi~~~-.
at each call on the subroutine. This is accomplished by first analyzi~: ~~’;~~~~~iy%+-:., .......” ......=
rout ine and then using the re suit M&$S and T relating the int ra - su br.qut~~:,,p.~~yj.-~,
cesses as & and ~T, respectively, for each program call on the, subroutiti&.:,.~.nq.~:i:&V

.- -=

program analysis will then identify all instances of parallelism without.dufiEc&tiii#~R- k
~ “:-”’’---’-’~*any cn.mparis on of the int ra - subrout m$! input - output sets at the varmus : -:... -L .-:.

subroutine calls.
..-, ..-.:,:,,:- ,,,,

“’“ ““-- -’-’-’:’”’:’+:+:* .,,... . . . .,.,-
An alternative method for handling subroutines reduces the number of RrW&5&&~&
used in the, analysis and, therefore, the size of S and T. In this s chem~.’”:tm:’;:”::::,~fl
subroutine is analyzed once separately f mm the program, Then rathe”r “HEiK;;,==:a

- d.. .’:--=&&
inserting the subroutine analysis re suits into the program at each ~,dl...ih~~~~. . . . . w.gr= is analyzed with each subroutine call SerVing as a single Proceig. d?hb~it .,
sebeme, parallelism will not he found between processes where pne.,,pf th_e;~.q~~

. . -,- ,Y,...~. A

cesses is efiernal to the subroutine hut cannot be executed in parallel..w$tw,~~~~fi~.
entire subroutine, and where the other process is inte rio’r tO the’ “subrowtixif%Z%&*iHE~
The above methods are not applicable to recursive subroutine:, since tlie. ‘:~~:~%.=
substitution process is nonterminating.

...-.”.. .A,,=y=p .
-~‘: ‘~::;:=;y.j

,..,,- .. _.r. J.q
,.:~.,...,.. *F..*,-

LOOPS
...----- w+”

\ ..*.,..*+&
.,’.,.,,-,+,.ati

.......-..=- .
The algorithm as described can be used to a~alyze a loop by stretching it:.91k&_
a sequence of iterations. This analysis, however, csnnot be performe~~~”~,~;-~ “
run time if the number of iterations is data dependent. Even if the’ numtiel.ds.~....=~,-~
iterations can be determined at compile time, the mm be r of process e&,fio&W&.W

. .,...,=-= .,.

by flattening out the loop may exceed the handling capabilities.
,. ..=.,,,,,=.-,=.:... ....=..>-

-.,..—,:*A
-, ..,..,. ...!. . ~a

A method for loop handling which takes advantage of the similarities bet~e~.”~~:t.~..
successive iterations of a loop and still recognizes those instances of paruei%--:,.ti+

. . . . ...---- ,.-..,,!

ism determined by input-output set relations is now developed, Initially we vmll-’..l +~i
. ,....-=~

assume that the programs under consideration either do not contain arrays, or - -,--.:+-
.............=.~

that each array is treated ‘as a single variable. This rest riction guarantees titit::=’%i?
,-‘:+x

--.=,.;
.-,.+

—.,.,,,
—,< .+.
- .........

16 ,~- w
.57$7!
.—..+.=

- —X,..y,.-.
... -.-m,.*..

,.--.!
~~ ----?%4.. ...?,-*”

.;-,:.+,,,,



input - output sets are not a function of the iteration. That is, for any iteratinn of
a loop, if an instance of a variable appears in the input (or output) set for some
process, then for any other iteration of the loop, another instance of that
variable will appear in the input (or output) set of the corre spending process.

Since each iteration of a loop has the same processes in the same given order
and with the same input - output names, analysis of any iteratinn of a loop will
identify the intra-iteration parallelism for all ite rations of the loop. The array
handling technique mentioned above guarantees that analysis of any two conse cu -
tive iterations of a loop will identify all inter -ite ration parallelism, since direct
essential ordering of processes can exist only between processes in the same or
consecutive iterations. Therefore, loops can be handled by analyzing only two
consecutive iterations of each loop.

CONDITIONA U

The re are several run-time philosophies which maybe used in conjunction with
conditionals. One approach permits both branches of the conditionals and the
condition itself to be executed concurrently. When evaluation of the condition
is complete, one of the branches will then be inhibited. This method
reduces the duration of the program at the expense of performing some
computation whose outputs will not be used.

An alternative approach will, however, be taken here, The goal will be to
initiate each process as soon as possible without executing processes unneces-
sarily. This may be done by evaluating the condition before either branch of
the conditional is initiated and then executing only the single necessary branch.
This approach does not prohibit processes common to both branches of the
conditional from being executed concurrently with the evaluation of the condition.

Conditionals can be analyzed as any other processes, except that the given ~T
will be nonempt y. For example, let process PI be the condition, P2 and P3 be
local to one branch of the conditional, P4 and P~ be local to the other branch of
the conditional, and P6 be common to both branches. Then OS will be the given
order of the processes as shown in Figure 2 . ~T, however, will have four arcs,
one arc each to indicate the serial ordering between the condition evaluation and
the processes local o the conditional branches. ~S~ and ~S~ are included to

\guarantee that ~T ~ (OS n ~T). *

*
The need fnr the requirement ~T ~ ‘(OS 11~T), introduced in Definition 8, is

illustrated by this example. If ~S~ were not included and 02 0 13 = @, then

the algorithm would not gene rate 1
MS3’

since ~T~, and consequently

S+ MS, since ~E~, even though S;.



‘4
P.

a

P P
a c

a Int ra-level
..-— , .+, +

Figure 3. ~S Graph for Analysis of Recursive Subroutines ““”:;~+,,.,.,;,..&f. ,--- .- -=
., ,.,_. GA-,

..-~....

18



SERIAL INPUT-OUTPUT CALLS

Many oneway input and output devices,, such as card readers or line printers, are
read or written serially. To ensure that the information received from (or t rans -
mitted to) these devices is interpreted (or displayed) as intended, the given
order of reference must be maintained. For example, if lines were sent to a line
printer in any order other than that given by the programmer, the intended for-mat
would he disrupted. Thus, for each serial device a ~T arc will connect those
pairs of processes which include consecutive references to that device. Let

‘r
‘2’” ‘?’ ‘4 ‘w and ‘“

in that order, comprise a program, and let P2, P3
and P5 mc ude reference to a particular serial input or output device. The ~ S
and ~T for this program will tbsn appear as shown in Figure 4.

“s’~
PI

‘2 ‘3 ‘4 ‘5
P

6

~T:

● ●

‘1 ‘2 ‘3 P:

Figure 4. Serial Input-Output Calls

19



,.. ,,. - -. .,,,,,.-..,,
.,.,,.,,.,,.,.,--,. . . ,,...,,..:.,..,,..,,. ,. .. . .

.PROGWMMl,NQ.@N,~~~GE FEATURES..:E&kii-
PKm:~%tis~: “’”””’““””””””‘‘“’”””’

,,.... ..w.--., . . .—.- .,,-----...—.,-.,,,,...,.,.,,,.,+., ,,, !......
The langnage-independent approach: to, recngm:zing parallelism through. stud

. . ....,. ... “,--h

fomal trmslatoi StI.UCtW-SS permits ,idemit’ying gene ral. a.~$c~e .-~;i=$fi~... .. . -----
ordering without getting involved with fe”alure S of Pdr~iuuiciJ ]?iiE+,S&.~S~=_

,.. .....,,.—-
.----- ,,,-A-.

Specific language -dependent fea~u~s are als c import ant sinm.’the .irit,w%w~~. ..
applications are” programs written in actuui languages. By ~on5ifieb~g-&&&
specific differences in actual langu.age,s; ;~ ccanparati ve basis’ can%ti~=s~i~~
for recommending that Particular”” features Ix: !:sed for paraliel re~bghtiifi~~~
features be used as essential ‘ordeti indid~d:ons, and, indeed, tlmt l~ri&M~SG6m&~

.“,. ,,..--b ,- ,

particular features to aid in the recognition of parallelism.
- --,. ,.u,,,.o-a

... . .. ,-z”. ..,-,. ., ..-,,. -,=-. . -...—
Some specific features of languages will n cm he inve sr.igated. Loop staterrf~k~-

.. .,.,.,.,a ..-.,.

yield the largest potential for parallelism.,
. ----

since each set of cmtmdded ,lda~fl:;~~
multiplies the number of opportunities fo!:, IX!raile 1 exc ctnion. The FOR’I’IU&~
ALGOL FOR-, and COBOL PERFORM- stal.e:conls me mml:;z+!d. UncOndltmr&--. . ... —..

. .. . . .’—6-.

transfers cause problems in”th:”-r&&Ziitiofi of loops and in crossing:the-~cb~~::=:~
hounda~ of variables. Conditionals Whicli am (laIa- depcudenl pose rEe”:&~{ip=,,-~,.
impediment to parallelism. Evaluating groups of conditionals in pctralkl;: X.ti&-—-~
than s tattering them through a program,

,,,...A
-m:ni nu:z(?s Ihe ntirn herof. sepaMt5wfl~--

ordered parts of a prcgz%m. Duration ~f dcfiri!i m of an i~stance d. a &ti-6KlKQ:
—.

import ant to the mapping of inst antes into *Merr,o r,y on a noai me rce mng ksist..-==
,.,; .,- . ..- .,,.”.

beginning on this analysis is reported,
.,, ,,. ,.- .. -,.,.. . ...... . . .,..,,m.,,. ..__
-- ... . ,,-, ..-...-W., .—..,,.,,,,. ..-”-.=

-,.. ........ .... . .....,,-..,,,-.,—u

IA30PS
,. -..,!..,.=*. . . .,.,..-. -.,—

.- . -,,,..-,- A

Loops play a dominant role in progr-s’v:r:twn iu prcser’!t prog
They permit programmers to iteratively t?xpr+ss repetitive Procesee?.y
of program. The iterative nature of loqi coril rol is adequate for ‘s,eqge~~ksfee~
tion. However, the iterative form iwp~dcs piamile 1 setup of iine .~ont~~tfi~z
bodies. Gosdena has concentrated on,expli c:: 100P consT bums as the..md~

.,. . . ,-,

sources for parallel activity, ” “He pr?npQsvs ?hat u large ~~ac!ion .of-al~~d-e
parallel, both in the control and the. loop ix?dics,

.,. ,,..
und re com rne.nd:.:e~~~~a~

the ability to specify loops as either pati.alic!i or kc mtive .i!l the pr~~rsrrm!~,,.,.,,:,=:::.-~”._”
language. ,.. ,,--

We will now consider the control of loops md parallel esl.ablishmi%t.1~ .. . .

pat ha of cent rol even when the control mechanism, is itc ratively exPtie”~~e,! - ‘~
programming language.

---- -,,,,. _ -+,,..-, ---
,,,. . . . . --- .,..,.. -,.

Some opportunities to establish in paralk!l more timn onc execution of-a::~O,&-
- . . .... ..

are deitermined by the algorithm. The algori:. km !x?quircs for concurrent-..,~~~e~q~-j~
that not only must the cent rnl variable be iImk:pl?:ldcnl of iis prcde ceSscUYCW&r.&—-
variable, but also independent of its predc c(?s.?or !OOP :Joci.v. The loop dbtiWiL_.-..,_. —.. —

statements in FORTRAN, ALGOL, and C OTW L wtil. ix? con] POred to see-wtiii~ u~h~~’
opportunities exist for estahfishmg concu r.m:si, pi,ti!s o

.- ..-, ---
f c mt rnl for lonp b“&iISSr---.—,,- ,,.. . -.-—-,...,,.------.,,-,, ,,..... .,.,,,

,..,,,.. .... .. —. . .-,,,,----, .
2(I . . .. ....-, .-

..... —. -.--, .-. —. ,-,.U,a.-



At compile time, if the number of executions of a loop is recognizable as an integer,
then parallel paths may be established. If the number of executions is recognizable
at execute time upon encountering the loop entry, then parallel path cent rols may
be established at that time to initiate that number of loops.

Conditional statements within a loop body that can lead outside the loop with no
intent to return are possible in ALGOL and FORTRAN. COBOL and ALGOL have
eXPli Cit f0rm5 Of loop cent rol including condition evaluation to determine loop
completion. Evaluating such a condition generally depends on loop-created data
(otherwise an explicit form for indicating the number of iterations of the loop
would have been used). Consequently, there is an essential order between cycles
of the loop when a condition determines the exit. In some cases it may be possible
to reformulate the loop to separate all condition evaluations from loop body
execution.

FORTRAN and COBOL program units are characterized by static storage require-
ments determinable at compile time. ALGOL program upits, on the other hand,
assume dynamic storage requirements. The effect of this difference on loop
control is to allow significantly more ways to defer to execute time the decision on
number of loop executions in ALGOL, and to make loop exe cut ions essentially
ordered,

Further interpretations and rest rictions on these general ideas are developed in the
following three descriptions of the particular loop statements in each language.

FORTR.AN DO Statement*

A DO statement is of the form

DO n i = ml, m2, m3

where: n is the statement label of an executable statement occurring as tbe
terminal stat em ent of the associated DO. The statement must follow
the DO and be in the same program unit. The terminal statement may
not be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE,
DO statement, nor a logical IF cent aining any of these forms. In effect,
this allows only the DO loop cent rol to follow execution of the terminal
Statem ent.

i is an integer variable mms of the control variable,

m ~ k the initial parameter,

m2 1s the termination parameter,

‘3’s the incrementatiOn Par~eter if present, Otherwise + 1 is implied.
*

This description of the FORTRAN DO statement is adapted from reference 3.

21



... .--. ...-”- !:.---,.,-,.. ..~,.. .,
,... ..,: ., ..,,,.... ,. .. . .. . ‘, ,,’,~,-.. ..- . .. . .. ...w—

.aaka=i+v.... . ,. .<...,,,,,.,Am_+

“ -.”””:=*
;:::.:.“““-V”--WS,. .,,,..,.,,.,.,,,,,, .,’.,,.,,, .. ,,.,,.,,.

., .,.-1
. .,,-., .

,,, -., ,-..
., .-.

y ., .,. ,
.,,, ..dFa*

,.,, .,,.
- .. ..
... ,...+

E&h in;, ni=, and K& is either “an integer. constant or imegcr v&P~~.b~%&
.At ti%e of executicm,,eaeh must be positive i!nd m ! <: m=. ‘llm range’”p~,;+h

.,... ,,, .,,,.,
the, set,:.of::,exe,cutable, statements fOllOwing the DOs latcmcnt thraugb2@!%

astatement, Procedure actions required within” ~.hc range ‘ale ~qSiirn%W .
temporarily within the r~ge.

. . . . ..,. ...... - ...
. . . . .. _.+.,1,. .. . ...wh,..

Redefining (by assigning “of a new value to) any, of i, r.:, m+, ms is prtihi~~ “
du,ri~, $he execu*ion.ef the .rkuge.of the. DO. This means that the rnaxmm~:$

.- .. .:..,,,.,.-=O

of executions is alwi~ lmb”%i”befo%. first exe:cul.ing the range. -.. - ---.,. ...,.,-,,. . -,, .-..,,,,

The DO statement execution sequence is 1) i
-. .,-., .

= m!; 2) exomm range, if the;tg~ti
statement ia reached; 3}i =i+ rn$, Wi ~rna GC) TO .2); 4) exit “~ith n=~~

.. . -,. .1.. - . .!..,----
Exiting from the range of a DO may occur by execution of a GO TO statement.ti%ii~-~
arithmetic IF, that is, exiting may occur withQut s.atis fyi ng the DO.

.,,.,,.,,,,.,,......
. -.~..., ., ,..,. ...... ...,... . .,,..”.., .,.,,.,.M!

A GO TO or arithmetic IF statement may n~” caus~ cOntrOl tO pass into the r.a~:~~-:ji.,.
- .... .,--, - ,.,,A

of a DO from outside its ra~ge, except as described b~lOv: for tb~ extended rangw”:,” :.;: :;:2.,,.,,,,.,.,,,. .. ..,,-.. ,ti,b,.. .__a

All values of, the control variable can be assigned at compile ~ime if the ‘folltii~..-..-~
.. . . . ...a

two conditions hold: 1) m i, mz, ad m~ are integc ~ ~On~tants, ~) there ~-%%::- ~,;
. . .. ,..,,. .,... ..,J,

no exit from the range of the DO by execution of a GO TO stiitcrncnt or an arzth--- ----
me tic IF statement, If these conditions hold, it is ;lO~~ible t~ establish k = ~.P~R?.’’””%-’”%

... -----
.—

the greatest integer in (ma - m ~) /m3 parallelassi&mwnrs,
., ,- ..,,.,,.-,,:..,

.
. . ,,... . ..-—

If condition 1) is relaxed to permit integer variables for any’ O: the m:,
me, ..Qr ~;j~;:~?w

then at compile time it is possible to add the above computation for k as a c&~Eo1-, -----
-,.,. -.. .,&,,.

process which can then establish that number of pe-rallel control paths for executing; :-y--
. . ., ,,,,..-

;he ranges. .,... ,,.,-.- .. . .., - .,,,..,
. . .-. .,- ,W. .

Nested DO statements are possible so long as the range of the contained DO M a
,.,,,..... .. .,,,..,.M.

. ,,.. . . ..
stibset of the containing DO. Execution order is inside MIt; A comll~ete neetie~~~s’~~
of DO statements occurs when the first occurring terminal statement of antiD&.;-~;-~. . . .- .. .. ..
statement follows the last occurring DO statement and the first IJXU r L’tI-Ig@ ,,,...,.-,,..&L

. .. .. .. .

statemeni of the set .is nnt in the range of my DO statemenL Fm’ 3 u ch a COMPl~!?&;?L’Z
ne ated nest of DO statements, an extended range is permitted for the innermest:of ~:f :H;~
the DO statements, from which control may pass external to the nexl and re{tifi.XM’”’:U.Tfifl
the innermost. No recursive use of the exlended range is permitted. ~. “:”.~-–---.=~—.,. ,,-..,-,-,,,.,

,- .-.. ,.,,..

It is not necessary that the range of an embedded DO statemeni bc parallel fo~~~e~}~~=<~~
. .

range of an outer DO to be parallel. A nest of DO statements may bc tOta~ .::. ‘.:”zZZZ
parallel, if all DO statements in the nest are parallel, In this case the product: :.:...=’:..:;:’
klx~~... x ki paths of control may be established.

,- -. .,-.... .. ,!-,.-. .,.,,,,----
.,,.. A

22



ALGOL FOR Statement*

The syntax of the ALGOL FOR statement elements (given in a modified Backus
normal form) which are important for this loop discus sion are as follows.

(for list element) ::= (arithmetic-expression) I (arit~etic-expression) ~

(arithmetic-expression ) until (arithmetic-expression) I

(arithmetic-expression) = (BOOlean-expression)

(for list)::= ( for list element) I (for list~, ( for list element)

(for clause ) ::= for (variable ) := (fOr list) ~—

(for statement ) ::= (for clause >( statement ) I (label) : (for statement)

A for clause causes the statement which it precedes (the for loop body) to be
re~atedly executed O or more times. In addition, it per~m.s a sequence of
assignments to the control variable from the for list.—

The sequential exe cut ion expected is the following: 1) initialize the control variable
by assignment from the value of the first for list element, 2) test for an invalid
assignment; if it is invalid, go to the succ~sor statement of the for statement,
3) execute the statement (exit if a ~ & leading outside the statem~nt is encountered),
4) perform the next assignment from the next for list element in the order written
to the control variable doing sny necessary eva~ation of arithmetic expressions,
using the current values of primaries, and then go to (2) again.

fn order to establish parallel paths of control for all executions of the loop body,
the number must be known he fore any are executed. For this numhe r to be known,
there must not be any condition which is dependent upon loop-created data that can
change this number. Consequently, for lists made up from for list elements of the
AE or AE ~ AE until AE types ( ca~oryl) are potentially~orde red. E ach for
list element of the AE while BE type ( category 2) imposes an essentially order=
sequence of loop body executions. A for list may consist of an alternating sequence
of for lists from categories 1 and 2, l~which case a similar sequence of potentis.lly
uno~ered and essentially ordered executions of the loop body exist. Any data-
dependent conditional in the for which can cause exit from the loop body
imposes essential order. H~after, we assume no such conditional and,
thus, we consider only for list elements of category 1.—

If no assignment is made into the control variable by sny statement in the loop body,
then all its values are obtained from the for list. ALGOL permits assignment to
the cent rol variable or to primaries in th~arithmetic expressions of the ~ AE
~ AE parts of a for list element to be made in the loop body. If such assignments

w
This is a partial syntax from reference 4 adapted by leaving undefined some
non-terminal syntactic elements such as “ (arithmetic-expression)”.

23



,. ,,,:. ..;.=,,.,.,.,..,.,” ,,,, ,,., ,, .,.

.: ~~.- . . ...? Ma+- .=

-., .,,. *, ,,

,,,.:. ‘“-“ ‘.-’,. ,,,.W,,”ti
,“-,.. -

. .

. . . . . . . . ,.”..,P -~ ,
m.,. ..,:-

- -. -&’*,.
. ‘ . . -.a..y*,

,.. ..$ ,,,

-, . ,. +

.-,. .,-

., ...,..,*

.,
,, ...,,,.,- .

,,,. are unconditionally made, and if they ,are a functioridf only vaIues’ exist.i~.,..,. the for statement, or of the prior control variab~e..””bf:hes~ prima Pii=i?j~s..
c~~ may be. sep~at~ly analyzed from the”-rest ‘of the”10~p ““body.,,“.-..-++,,,

. .. ”...,:,,”
,..-—-

,4. .. . . ....

An apparently iterative sequence for establishing the valu<i..,q!,>h~,~c~~~r~>
replace d by paralle~ qu.irnei%tiori through tecognit ion. at.:.cornpj}e ‘tl~.q~~~hfi
ability of the valye.s .gf- al~<pr~aries tae~ss”e.i-$ for deteirMiriIngIaIK~~:~
Should the values of all primaries be” irisig~ed”:”numbers,: tliiri.tike”:patli~

=be established at compile time. If any of t,~se prima ries’is S.:iaF~dEW
~ri~le primaries have assignments into ~~,m restri&&S S~&t6~~~k~~~.
of paths of control can be determined prior to first execut?~n” of the nohae.,.,
portion of the loop body,

..- ... ...*..,...
., ...’.* -y---., . .. . ..”.,...”%*H

The cent rcd variable becomes undefined” if exit results from e.xhaustlq~”~{f~{.~~--~”
list. The last value of tbe control variable is preserved if exit from ‘O?~x----?
statement occurs he cause of a & t~ in the loop body. .--...:~. .. .... s.:..... .. ,,-

: :=<::.ZL-.-2;:F
Side effects of a procedure call cau cause assignments Outside its body’ or’ ~~~~~~-~~-fi%%,
other than the return to point of call. Such procedure calls occur in the for “~-~-&-.~~-~~~~-
in the for list. Either of these can prevent or make indeterminate at cw~~~”~.~~~~=
the est~tishment of parallel execution of the.- body, Huxtables has c&~~~&;S;~
procedures as follows:

. -..-, ~r..gw
normal - having no side effects, conditional tuwiku:~,fii&w:-””i”

effects are conditional on cent ext, and unconditional sneaks.
.. -.-..k..~. .. .. . . .. ..... -,. .....”M=

The cond~tlonk> .::=-:j.;+l~t:
for recognizing normal procedures are as follows: no OWN variable s,- ‘iitihca~.’,...~ &&
assignments, sbnormal exits, nor use of any switch; internal procedure CRl~&~~~~-~~~:~~~

. . .

limited to normal procedures; parameters exclude label and switch; and no e~~eg$--~.+.- ,,.
assignment to parameters called by name. Conditional sneaks are the sarne,;W.“-’”.,_-.;:5g
normal except that explicit assignment to parameters called by mini e is PertZXitNXdi’L-_,n~&
All other procedures are assumed to be unconditional sneaks. He desciibesia.:.. “’”‘ ~:~~~
technique for classifying procedures which involves discovering the total 6f all --.~i.~=-~
possible run-time procedure call structures of the program.

- .-—,,
Alt bough further =.--=

analysis might @how that unconditional sneaks would not require easen~iak ‘.::~::UfI&_~
ordering, the effort would likely be greater than the benefit gained. . . .. .. . ...&,,

-- --=. -....--*., -- .- ... . ....- ..,,;__, *,~
,.,,,..g,-...._.:. =_”

COBOL PERFORM Statements
-->-.+,,M..,.--A. ..... .,.-....., ,.-,.&&

..-. . - .- ,.._-...,,,,,;.,=. ,.,.,_, ___.-&&
,-.. -~...&.aA,+,,

The PERFORM statement is used to depart from the normal sequence of,,e~=~;w~
in order to execute one or more procedures either a specified number .Qtt.~g~~,~
until a specified condition is satisfied and then return control to the noriWdE~;l15X~_
sequence - the statement following the PERFORM.

..- . ....~.. -.u-.,,,,...-< ,.U,..._,,__
.- ....-..--.---A .~ ..--------- .,..-,...”*

The four general formats are as follows: -’--””-A..+ ., .- .. . ..w,-
--- .+.—;.,....e .=
-, --- -..3. . t+,,... .—. .. ----

. . ...... &i. . ,.-a=...,*“,,~::,,l.:-.
--., ,,,+. .- ..=._.,._+.-,,-<-
.. . ..

. .. .w..-

24



1) pERFORM procedure -name-1 [ THRU procedure-name-2]

2) PERFORM procedure -name-1 [ THRU procedure -name -2]
@::::-3=

3) PERFORM procedure -name-1 [ THRU procedure-name-2] UNTIL condition - 1

4) PERFORM procedure -name-1 [ THRU procedure-name-2]

L[AFTER. .1
J

Each procedure-name is the name of a section or paragraph in the Procedure Division.
Each identifier represents a numeric elementary item described in the Data Division.
III formats 2 and 4 with the AFTER OptiOn, each identifier represents a numeric item
with no positions to the right of the assumed decimal point. Each literal represents
a numeric literal.

There is no necessary relationship between procedure -name-1 snd procedure-name-2,
except that a consecutive sequence of operations is to be executed in every case be-
ginning at procedure-name-1 and ending with procedure-name-2. In particular, GO
TO and PERFORM statements may occur in the sequence. If there are two or more
direct paths to the return point, then procedure-name-2 may be the nxrne of a paragraph
consisting of the EXIT statement, to which all of these paths must lead.

Format 1 corresponds to a call of a procedure without actual parameters. In format 2,
the procedures are performed the number of times specified and, therefore, parallel
path Of COntrOl may be unconditionally established. At PERFORM execution, the value
of identifier-1 or integer-1 must not be negative. If the value is zero, control passes
immediately to the statement following the PERFORM statement. Once initiated, any
reference to identifier-1 has no affect on varying the number of times the procedures
are executed. If given as integer-1, the control may be set up in parallel at compile
time as long as tbe procedures in separate iterations are parallel. If given as
identifier- 1, the number of control setups may be determined from the value of
identifier- 1 on encountering the PERFORM at execute time.

The UNTIL condition parts of formats 3 and 4 preclude parallel execution, except in
those cases where the conditions are fully evaluatable at compile time, or the or-
dered set of results of condition evaluations are determinable prior to executing the
procedures. To achieve the equivalent of the ALGOL construct until AE, the condition
would compare the index name (or identifier with the value of the desired limit).

25



. . .....
,.. ,,,,,,,,,-..

,.. -.*
.,. ,-,.

. ... .
.,,.-.

.,.... . ,,.,,,-, ---
., ..,,,....A .—

--- -’.

Format 4 permits setting ; p om!, 1v.’o, or :,hree ccnnrol variables, testin~lg%
corresponding conditio~, s, ;.~ndif s U me Ih!se,

*

,... ,. -,.,m,.&,.
exc cming the proeedu.s-ee~

the last data-name is aiw WC] i!} !k apprtv)riaTc am.
,-. .t, -,

m nt m d T.he cor,re sprm. MIS=
condition retested. Wl!cn ;1 ::on:iil ion is Lr.w, ot?]e r :!mn tiw first, tha~:,~-a~~~~
reinitial zeal, and the nex! p Ill?ce rl:ng da:a -mar.c :S tl~gnm:ited and tested.”: l~K.RJ;
condition-l is true, the P]: 1HV3RM is finihccl. . .-,.-, ,, :Jw.,. .- .-.., -

- . . ,,,,.......+.,..,.!.wz
In addition to the restricr:on cm para i!r Ii sm c aus eri by i be T!XT1.L cumii i,iiAl&K&c-&
control variabl~s other Iti:,n Ii (! firs !. ?.w n!inirin!i md To ! he FROM vahie ~dd!!
PERFORM. Their valm,s may be u ,1.,..c ,,, .,,.. d I)y ?I-,e procedures f mm I ~~.;.y~$~~~~~

the PERFORM was encomu c red; Iikc% isc, II:e index- :tarnes and identifiers oecur—. .--.:.’- .—-a
ring in the BY part of any of the cofi” rol ~flal’~:lbIcs and as.y ‘*’uriab~es WCW’%MIE,%7S
part of the ccasdiiions m ay lx? o 1!e red. ,\ny such al~c raiiun viill preventpar~&~
exacutim unless either ni;.rf: ric ii!cra:s ( 0!’ ~clen::f,t?rs whose values are Wlllktl?tiati.,.
similarly to the ALGOL prim. arics ts c Ciin .1Ii) u re used f [r Lhes e ah e ratmn&-,-

. . . ,,,-,..,.,.a
.,,. .. ----------,, ,,,.,,,,,,.- ....._. -

,.. ... ... .. ,,,,,,-.,,,. .,.. . .. ,..,,.. . ...

UNCONDITIONAL L TRATSFJ,:RS
,- . . .,,—-. ..-,,- . . . ...-. -.,—

- . . . . . ,,..we.-



.“

CONDITIONA I&S

Language constructs for conditional establishment of paths of control based upon the
result of a single condition are used in most programming languages. The form is
to first evaluate the condition and then set up a path of control for the single path
corresponding to the result. N-way branching constructs can be reduced to
selection of one of N alternatives also based upon a single condition.

Conditional establishment of a single path of control presents a problem in deciding
which instance of a register is referenced by a process following the condition when
several instances could be meant, depending on the actual path executed. Alterna-
tives for solution of this problem are based on the duration of definition of an
instance.

SEQUENCE OF CONDITIONALS

Languages that group conditionals ‘for evaluation with action selected as the first to
be true (decision tables), or languages that have a list of condition - action pairs of
which the first condition to be true selects the action ( LISP) . provide opportunity
for executing the conditionals in parallel. When logical relations among a group of
conditions are evaluated to select a particular action process, the individual con-
ditions may be evaluated in parallel as long as 1) evaluation of any conditional
doss not modify the result of some other conditional in the same group, and 2) all
operands required for evaluation are defined.

The first qualification may be met by having temporary storage locations into which
all instances of store operations associated with conditional evaluation are made,
with stacking or tagging to indicate the creating condition. A conflict may occur
because of name reuse in store operations temporary to or incidental to the con-
dition evaluations. This conflict may be resolved by reference to a stack or tag
associated with the name occurring in the nearest condition not following the con-
dition being evaluated. By this means proper conditional evaluation will take place..
The values of named variables that are later required and are created during
evaluation of the satisfied condition may be permanently stored prior to continuing.

The second qualification requires defined (valid) opersnds for conditional
evaluation. TO permit recognition of these we must know which instance of each
name is appropriate e. For snrne conditionals, no instance of an operand need be
appropriate. For example, assume that creation occurs as an action following
some conditional evaluted earlier in the given sequence. That prior conditional
must have become true and that action taken before the current conditional can be
true. Therefore, in this case the conditional is inconsequential. Several creation
points may be appropriate. With sequential evaluation, a stack can be used to
show the order. With parallel evaluation, the completion order may be arbitrary,
so an indication of the creating process is required to preserve the sequence as
originally given. Parallel evaluation of conditionals appears generally to result in
unnecessary work for the sake of finding the desired single action more rapidly.

27



--- ,.,:“’-’ -. ..-.,.,,,.,.., ,, . ..._ ..’,...,:...,.,...:,. :. .,: ~~~ . . . . -
‘,--- ,!:z..,~:..~...-...x~-.-..-.s:... x.. ,..,. ,—, ,...,.+,,..._: _&L_

$. ...-4
. . ,., .. . ..:. .,,.,..,...N...,.,.. #..., ,,.,. , ~

..-

. . . ,,,. .-
,. ..,..

..,,. ,-..,”.

. . .
,..

. . . . ,.. .: .-. , . ...,,, . . . . ,_

., ..- ,., -,

-

,.. .
. ,,. ,..,.4

.,. . ,., ., ,.—:.”...., .-. +. ..- !, -----

. . . . . . .,, ----

.,, .-. . . . . . . . ..-.

When sufficient conditionals are i:v:LIL::i e(i .<) in:
. ...,. ... . . . . -._.=-

,.
W c& Selcc: ‘:J,he fol~owjlg.wati(

..process, any Other condit~onal C:VA ,-,.
,.u.aw

--,, ,JP can he s!lspendcd (’and tmwf~p.w~
~~tliete created can be released.j. . .. . . -—. ,-w.,. ,,,,-, ,,..,.....,,,.,. ,.. - . ..4”.—.++,.. ,.. . .. ,,.b.,-s.-,,. ,,,-,... ,. ,.

_iw:_,,,. ,The single action selection is. :lilpr~p~l~l c ..u Sf!qu(?mial Umguagds.11~ .
--”9,n- - -~-L “:~~;,:~~@,,:s,~q~~titi:l. I.aii&ge.. lms impl ‘.,:d fals e c ondi( iOUS,;$S.WHNWEul~&~

first occurring. coriditibii”. ““-’””’THe cpnorumi:j to seqtigntia:ly:.l .ekt.d-pa.i%~iilas cm~~
,. .,.,-, .ti.. .-a

.dit.ional. .ogly occurs when ?11 p~ cr ~wl~:~~un~l~ arc fals~. ” P~~~U~~;%~~~~~~-
., h , fj ml oc.curring,:t?%e ~+&~&&~$~c ondlt fimakrim Euc h ~..case..s ho! I;d se k ct. I.J.

action. There are applieatkks Ivh(+m n?IiW)lC M’. iofis. m W. be ~PIWQPd*~:~
therefore parallel action paths r. ay ix? t!w: CIJIW!. .1-I)(2slgoriihrn will ident&tl&#KA

. .,L____*., ,...,.,., -.
..- .,. . “- .,+,...*.- -..u.. .,,-”*

DURATION OF DE FIN;TION OF \S INS T.\KCJ:
,.. ,. .. . .. ...-—.. ----

,. . . “.,....-. -.,,-.,. ,.. .. . ,,..,,+.,..—s

Creation ~f instances ~f;:&g+~ I~~rs skgg[?~:.
- .. . .,-,.,.,, .

s : !mi s ,UCh rt?gist.ter.s-.ar~ .d~f;ned. fow ~---=+
time after creation, In practic~!~ zpph;c w,ion, : ti13SC: !nstmcee have a.’laet “~ii.~~:=
process input. At completion of ~his ‘2w LSC!, !.:ht in:slmce is of no further use’”aqq’.. :“:v”,vgy
may be “unnamed”, which ser.cs Io T.a!w il:;ndl!li!m?riI.hc+real%?r. The interval. -’Q-:----I, . . ..,,M-
between naming at creation and .,.mun-.ing st’rc: 1ss1 we js the duration of definitioili:.;------ -, . . ..—

This study has. not been prim,] rii: [ov:ct’ei ?[ d IE:fi1: qucs ‘i ons regarding du ratioi%f.-.—. - ~
-,,..-.,-

definition, since “such questio:,s :1w r:ii)re prep! ?lY rcktccl, ro the allocation OP... --- ........-=
.,, . .- . . . . . ..

mappiug of names mto memo:r?- r]: no,.,i l:O-; I: I<:,.
.

‘,:,’::”%Tr!order to exploit the durati~”~~- - ;---,
. . .

necessary defmltzcm among v=.r i:! WC:s, n many-l 0- OIW m :~pping of name S fnto =.1,:...-~. ~-,_&
memory location on a non- ovc r’.:!pp! ug CI.Ir:!::

,,.
on basis is required.

“.., ,.., -. . ,.—-
... ,,. .. ,-, ,,..-a

.,,,. .- ,,.,. .. . .. .
,., -,,.,, ~~~~--

The algorithm for determinir,f~ C!sw i’!l:.s1,,lr’(>(:e~~ OWh?rh]g LW?S !e~s i,~f0~ati6&’~~-_~
is required for determining t h: i:.),?: ,,,i:$(,0(: a rlu.m:. For exam ph? , the T &ik%~~~=A
between multi-input, multi-olll p.il IJPCK’CSSWS<.,-,

. . . ,,. ..-<,kA:
31’r] lnal es a nurclx r of proce,9~.cam—--

parisons, any of which may ir<!!wk I P(! l;i.+
..-—

. --—IJSC or :.i~l,~ parliculiar variabb; : “&Y~ -a-
determination of any one name ti. :Jw UXc rsc cti.o:l o!, .u.lrPU~and i~p~t sets is.:~m~,,.,
to establish essential order be+ween two processes? ithout c?mp~eiirig.:~.pw~~=-l-
name comparisons in these sets. Dete mining the last use of .a narn~ ,,:~@z!~:- .” . i‘
checking all input sets of processes tbt are T successors of the crea~l~g ppoaese--.+fi
for occurrence of the particular created name. Some reduction in: t?Ie ~QW<~_”~F. . ..~==
che eking can he a~~eved in thOse c%es w~ re $he language prOtideSs:W~~
scope of a variable and the durations are extended tO this limit everi:fi.~~-=~-
earlier. Other reduction may occur when only one ,pf several separate>” ifigt
may be referenced by an execution, in which case the originally fofi:ul=?~d~
must have included conditionals. The naming could be the iiiaq’!e for :a~l k~
mutually exclusive instances. . .. . -,=”

-:,: -::~:~_-,

The recognition program for last use in Present pragr~ming ls.WWages is .~~.~~~
by the implicit reuse of names as outputs of pr~ces~es with a~~ual independ~f@::J:’”-~
meaning. Uniquely renaming the se names having multiple meanings as ptiow”&’~U.-~ ~..
achieves separate registers for each so that no name has more than one meafii’ri&: :-~~~~~.--
Tbe expense of doing this is that no register becomes undefined and thus no regj.?ter, ~~----

.,. ... . . ,.,,-,_!
,-. ,,,,,... ---

can be reused in a program. ,,, ----.,-,,.,.,....,.,,.—,
. . ...+.,..,,------. . .. .. .

,.,,,. . -.—
. .. --0
. . ...-..- ....,.#,,,w,

. .. . . . ...-.&., . . ,.., -“,—,. .. .,,,,,“ ,---. . ...— _-. .,-. . -+~-+.,~
.-_,. _ .-

~~~~- -~ - .-. -..-.-&b
-.~,..

28

A comparison in the programmer-given name SPaCe of oi n ok + 0 is an indication
of multiple use of names. Each such name in the original order of processes
determines a partition across the set of processes that use that name as input. If
a last use of a variable occurs in a particular statement, the use should be early
in the statement evaluation so that the location can be freed, or so that the
variable can be reassigned by a parallel path. Other variables having later use
may be postponed in the particular statement evaluation. A suggested algorithm
may be to minimize the duration in storage for any variable, since the duration is
loosely related to the freedom to parallel process.

Duration of instances will be considered in more detail in a future report, where the
problem of identifying the instances from names will be t rested.

29

The algorithm is sequentially formulated, .Ipplic all cm of ~h$,algofii~m-ti

,, :..;;:-*is suggested far analysis done on a l%ghly pttraliel m achiq,~. ;, S~vem,Fw
ways to ,tiew ibis. algorithm ard stig@ti4&,.,. ,.-,, A.. =.:=

Application of ,the, algorithm tothe ,gy&C~c Cic t’initionof CUiitC~i&ii’i

ttJck%sify productions” ‘of ‘the’ langqage,~,hy m igl:~ be, dorm in paraIMKT~
A method of determining the “essential con-. !>I.cxhy-” of & ~ii(btir”~.lfi%%l..-

,—

is suggested. . ,,.-,
,. .-..

PARAILE L APPLICATK3N CW THE Al&iOR1’H\M ,_ _..,,,.,-..
-., .,-...,--+
. ., .,,-,

An alternative way of applying the, algoritti is !W analyze al each stepl~~
.,. ,,,. ,,

all previously unanalyzed S relations then oxi =1>. g. For c’ach, i.he FeEl]
S, in which case T $s extended;.or Wie resuh rcay be un,oqde,~c!~, ,in, w~dch e&ee..&...--.,,-

.- ., “., ~-e”b

new set of unanalyzed &S, “iilithim w“ill % c reuic cl. This neii: set Of S.”&@Gii~~=
if nonempt y, connect processes further aps r:. in :.he given ordc r. If er~p~y~%hen .--:,.- H,--:=,..,.
analysis is complete. Thus; f or-N-totalpr(>c:f!s Ms, t’hcr<?ar’c no” m“ore:$w-.:~~
(N- V sets of c=parisOn~ required to deter all illli~~c~?sor parflelism:””: MwK;-”
are given a linear ordering of IX processes, 7P!(:vt,orst (,rlse ii N liziihllal::mas-~
The first step would perform (N- 1) input -o~”.;mt comps ris cms and produc~ .’~&----
.relations in mS. Each of these relations CO!XWCIproccsscs two, apart ~~~h=~~~~
order. The second step would thus have” (N - 2) comptt risons, and so on ,fRE:&~k~

,. . ,,.. .-(=,

steps, until all $N(N -1) comparis~s are ms <ic, ~r ;s UWWMary tc retahz:t~q,~
ability to link between any two disconnected cnains o f S-1inked praccsae& ;’tmc~-~
chain having O or more processes) until it :S CC:r. air] T.l!Wthc!re is no coiiie~m
S relation between the chains.

. . ,..,,a- . ,_,,.--,,,,,.. “-
. ,.,.“~.,,- ,.,-.,.”,,,.,-.,~

ii is pwsible to develop T iuitially, 6,ryLfr,ml T dc w!hJp S, If z~~$i(~~~~ :~~~~
comparisons are conceded as being recjqircri, i hey codd all t)C dcuw,“in,~~
Any nonemp~y intersection causes an entry in “I. .Alwrnnl.iucly, tfie~e:nl~
significant advantage in completing in para:lo ! sll t:orc p:lrisons. of a. paftititii~
process output (or output set) with all success or input sets. When dofi=~’id=i~-”
processes, ‘i’ may be compleied by forming l!x? 1ransi~iw closure. —

...- ., .-.,,.,,.,,.-,.,—, -.,. .
- . - -W,,,-m,-.,

. . .. “.- ..-,,..

. ,,. . . -,,. H.-

PAFu%LLE LLSM IN LMNGUAGE SYN TAC TIC DE FIXTTK)N
...-4. ,.... ”w,“.,,...“.......,-.-_v&

--- .-. ,.,.-,.”,., -4- ,- ---- ..+--,. -... —

One question which has been explored is tk,c: :Lp?licability of t.im algorilh~”f~~~=’
detection of parallelism to the syntactic dei’ini, ion d’ c e ::aill languages, euch-afi.---,..

.. .,,~,. ..-,..,,,. _

ALGOL. The results might be clas sificatit):~ O! i l“ICJlJrf~~~l,~linn~of ?be l~titi~~=~”.,,,..., . --,,-
which can be applied in paraUel, so t~t t~:,: ~,>r!~’.sx W:Og ~~i~it~~~~arl Of the c.~:” .T’ ‘z ~~~

. .
mlatzon mwcess itself could be speeded up h,: ! iii? Z!P: ~.i“‘c ;J.i(Jll of ni ull iprocesshag:.::: ,“:;;Z’Y=

. .,

30 ‘,- - ,. ,..,, .,

- ,,,,,,-”-
. -. .-,.,.., ,,.,_

._

. ------- ...
. .-,-,..,,.

.tw&.. ...A,
. ,. . -+

.,. .,- ,,. .,,.,.,+

This would be essentially an experimental study, which to be effectively carried out
would require a computer program for the algorithm because of the large number
of syntactic classes to be considered. It appears likely that empirical separation
of the syntactical elements of a compiler language would achieve results not much
worse than those achieved by application of the algorithm.

Theoretically, it might be useful to have a description of classes of productions
which can be performed in parallel. Some insight into the “essential complexity”
of the language might be obtained in this way.

The “es sential complexity” of the syntax of most programming languages may be
reduced considerably by applying an algorithm developed by Parikh. a He shows
that any context -free language can be replaced by an ambiguity preserving
grammar, wit h all productions except S (the initial non-terminal) in the form:

A.a Ab

A-c

where A is any specific nonterminal #S, and a, b, and c are strings of terminals
with both a, b not null.

As an example of the effect of application of this replacement, let an arithmetic
statement be defined by:

Al: (arithmetic statement) :: = (variable) = (arithmetic expression)

A2: (arithmetic expression> :: = (term) I (arithmetic expression) (add OP) (term)

A3: (add op) :: =+1-

T: (term):: = (factor) I(term) (mult 0p) (factor)

M: (mult OP):: = * I /

F: (factor) ::= (integer) I (variable) 1(arithmetic expression)

If we use the capital abbreviations preceding the nonterminal syntactic classes,
the non-terminal vocabulary Vn = (Al, Az, As , M, T, F]. H we abbreviate
integer by i and variable by v, the terminal vocabulary Vt = [i, V, +, -, *, /).

In our language syntax subset, the initial nonterminal S is Al. In effect, Parikh
asserts that the only other nonterrninals required are those which are directly
recursive, In what follows, we show that the given definition of arithmetic
statement, involving six syntactic classes (A ~, A2, A3, M, T, and F), can be
written in terms of only two syntactic classes (A ~, T). Of course, A ~ is neces-
sary since it is the “sentence. “ The single recursive syntactic class is not
necessarily T (F or A3 would have done as well). This illustrates the
recognition and elimination of indirect recursion,

Table I shows the original productions rewritten as individual productions, and
successive replacements yielding in the right column the reduction to two syn-
tactic classes Al and T, Productions of the form T-IT are eliminated as redundant,

31

T-i

T - v -“’

I I

32

:$~F
----.,:.,..,.,..,......——....-----;_,,,,,-.-...,,,.....-—----

“-’=’ “== “:::-=.,,,,:.,..-,-~~~.“ --

. . . ,, ,.,!.-. —A -

. ,.- ..+

““:::T-~T7:T-::::fl=:=’=++!!=+.—.. —... .. . ------ ;’ ::.:. , .,;

““’““”‘-”””- ““’-’”’’”-- ‘“”’:;~==%+m==...—---
G-.,. ,-...,=.,.. ,“...d

., ,.,,- . km .-.

i

. ,.,,.L::.AJ.
. .- “ .— ---

. ,, ,., . -.,-.,-. —.,

,.. ,. ..., “

,. ...”:..:.n!:+c3—---’h‘r- - ! ‘“::.J.L_._e~
m=f= “~

,, ,. “-

;-T :-.’’’:~:.-‘““:;““;‘:.;z.:Z- ——-
1 “n==-——=
I”... .- .-w —., -

. . -.. .,. —. —. -——

I -. ,.-. ..,..,—.—.—-. . -.. _-. ,.— -
. . . ,--- .-.-+

.
. .- ,.-. -., -,- ~

. - .,.,.--—&
.,..,,,_..!.,.

.,.,,. .-,, .- -----

. .,-

..,,-4
.,,....... ..-.,,,-

. ,. .-.,.“-,. +
,., . ..- _—

,.,,.,.,,.—--, --

,...+”

Application of the algorithm for the detection of parallelism to the syntactic
definition of a programming language requires that the order of application oft he
productions be specified. The order chosen by the programmer in the syntax
recognition port ion of a compiler for a particular language presumably provides
more nearly efficient recognition of the more likely strings. Therefore, some
value judgment is required in selecting. this order which is unrelated to the
actual syntax. Experimental determination of the relative occurrence over a
large set of progrsms of the various strings allowed by a Language could be used
as an aid in finding improved ordering for productions. Following all possible
production paths will obviously recognize the string if correct, at the expense of
following most ly incorrect production paths. A compromise in the number of
levels in the syntax that matches the number of parallel paths that can be con-
currently followed may be desirable, Intreduction of other equivalent sets of
productions (in other orders) may be done without reducing the power of the
language. However, as our example indicates, such introduction may increase the
number of productions very rapidly and complicate the recognition procedure so
much that application of Parikh’s result would be necessary to practicably reduce
the number of syntactic classes to a minimum.

33

~.~:,y+~

1. Develop techniques for recognizing inStanceS of registers given f,he, n~-s~~
in a program. ,., :: .:,+,,;:*.q

. .- AJ.L.X

2. continue to investigate formal prOgram structures wit! :Fphas~s on..?~RW9~—++W.,.W,..M,.+*W,
:..-..==*;*

3. Continue t.o identify the effect of language features cm pa~allelkmi:” . . ,....,v+.v+.,.,,..$.: :+.:.,.,- ,,:.: ,*.,,....,:-,.:,:,,,,=+

4. Examine criteria for partitioning a program into prOcesse S. : ~ ~~~~~~’~~~~.,,
. -.. ,..,,_.=,.,. ..

5. Discuss implementation of parallel analysis.
---.4 .---,dw.. . .,,_&:+.

,. “ “’”’””’ ““’--$:. -e
:.-::. :_r.~+!,.

6. Describe a language for simulating the essential order detection given ttiw; ;z:-_z~.
instances.

. -._..+,,.~
-....e-,,.<_ u+*

34

,.,,.. - .,

--, ..,.m.,

‘..-.,- ~;~

.&

--- .::J.
..........
... ...=

. . .- .:.,..,

.“

1.

2.

3.

4.

5.

6.

7.

8.

BIBLIOGRAPHY

Detection of Implicit Computational Parallelism From Input-Output Sets,
H. W. Bingham, D. A. Fisher, md W. L. Semen, December 1966, Technical
Report ECOM-02463-1, Burroughs TR-66-4, AD645438.

Explicit Parallel Processing Des cription and Control in Programs for Multi-
and Uni-Processor Computers, J. A. Gosden, 1966, FJCC, AFIPS, Vol. 29,
pp. 651-660.

FORTRAN VS, Basic FORTRAN, October 1964, CACM, Vol. 7, No. 10,
pp. 591-625.

Revised Reuort on the Ak?orithm Lanma&?e ALGOL 60. P. Naur Ed. . 1962-3.
Computer ~ournal, Vol. ;, pp. 349-3% 7.-

On Writing an Optimizing Translator for ALGOL 60, D. H. R. Huxtable, ch.
in Introduction to System Programming, P. Wegne r, Ed. , 1964, Academic
Press, pp. 137-155.

COBCIL Edition 1965, Department of Defense, GPO.

A New Method of Checking the Consistency of Precedence Matrices,
R. B. Marimont, 1959, JACM, Vol. 6, pp. 164-171.

On Context-Free Language, R, J. Parikh, October 1966, JACM, Vol, 13,
No. 4, pp. 570-581.

9.

35

,,,,.

Office of As,sist ant Secretati ,:o~,.D
Engineering) ATTN:”Tsc~’”’” ““’$
Washington, D. C. 20301 .-

,-,

‘ - .s%pp~:~i.:g::q;:,,:,~1’’<!~ : ::”-,==:”;
~

--a.-

.,,;;:;,:,;;-

~LA Liu, }iraS !Lngton, D. c.,.,
~.: ..-::..-:A -

,;y, ,LTI” S :+.,..,....-,. .,.., -.-., .——.. . ,------ .—,...,.—...._, -..- ,,....,,,,-+,.,.=,%..s,=
,. ..= .— .-- .”-----

,n~(:~.,io,; ,~g~,wy, ~4TT~. CUU~ Jd,~J .,,,..,,.,,,,&
.,,.... *.,WW
.. .,,,,,, ,...,.,. “,

,A’r”rx: CC>DE 6:%1‘d \l“ecr}ll~y~. .-
.,, .,—.. ,.+. , .,,- .—.. .,.. ,.,,,.,,-.. ,,.,i-----

~m-. ~~~f], w~shington$..,...... ,,,;+
.. *.-... ...,..--------

.

~ CODE (i(;}Mi B,

-1 r.. 20360

Naval Ships ~yetems @rn~a~d,

Department of the Navy, Wa~Mns----, –- ----

Director, U. S. Naval Re:
Washin~on, D. C. , 20390 :.,gz

. . : _. _.--.; ,-,, .=-.... A

Commanding officer and
~boratory, ATT%: ~brary, cmu =.-s,-, -----~

Commander, U.S. Naval ~rdns

Technical Library, Wlmte Oak, u...-. -r-...e,

AFSC sTLO (R’H’JD),N
Johnsville, Warminster, r=,ulp~.. ~.--., -. ...-,,- . .. ~

,ava. --- — .--, ._

----a.,l.ramia.. “18974 .,... ..—, ,,
_

.,.--A,’

36

